
Reinforcement Learning

December 2, 2022

The different types of learning

Supervised learning : based on observed data (Xt ,Yt)t where
Yt = f (Xt) + εt and f is the target function (unknown), build an
empirical version of f in order to make predictions f̂ (x)

Unsupervised learning : based on observed data (Xt)t , find
structures, patterns,... clustering, abnormal regions, ...

Reinforcement : data are observed through time , as decisions are
taken by the AI system

General framework for reinforcement learning

Objectives of Reinforcement Learning

Automated acquisition of skills for decision making (actions or
control) in a complex and uncertain environment.

Learn through experience a behavioural strategy (called a policy)
dependning on observed failures or successes (reinforcements or
rewards).

Examples : sensori-motor learning, games (backgammon, chees,
poker, go), robotics, portfolio management, operation research,. . .

RL : first formulation

Agent Envir.

Reward Rt

Action At

Observation St

dilemma
exploration

p
exploitation

I The agent is an actor, not a spectator [Sutton ’92; Bertsekas
’95]

I At each time t, she/he chooses an action At ∈ A depending
on the past observations and rewards (Ss ,Rs)s<t in order to
maximize the cumulated reward

∑n
t=1 Rt

I Examples: clinical trials, robotics, content recommendation,
finance, on-line advertising, yield management, . . .

Historical milestones

Birth: Meeting in the late 70’s of

I Computational neurosciences. Reinforcement of synaptic
weights in neural transmissions (Hebbs’s rule, models of
Rescorla and Wagner in the 60’s, 70’s). Reinforcement =
correlations between neural activities.

I and experimental psychology. Models of animal conditioning:
reinforcement of the behaviour leading to satisfaction
(research originally initiated in 1900 bu Pavlov, Skinner and
the behaviorist wave). Reinforcement = satisfaction, pleasure
or discomfort, pain.

I Appropriate mathematical frmework: dynamic programming
introduced by Bellman (50’s, 60’s), in optimal control theory.
Reinforcement = criterion to be maximized.

Experimental psychology

Law of effect (Thorndike, 1911)

Of several responses made to the same situation, those which
are accompanied or closely followed by satisfaction to the an-
imal will, other things being equal, be more firmly connected
with the situation, so that, when it recurs, they will be more
likely to recur; those which are accompanied or closely followed
by discomfort to the animal will, other things being equal, have
their connections with that situation weakened, so that, when it
recurs, they will be less likely to occur. The greater the satisfac-
tion or discomfort, the greater the strengthening or weakening
of the bond”

A mutlidisciplinary domain

The environment

Deterministic or stochastic (ex: backgammon)

Hostile (ex: chess) or not (ex: Tetris video game)

Partially observable (ex: mobile robotics)

Known or unknown by the the agent

The reinforcement

May reward a sequence of actions

=⇒ “credit-assignment” problem : which actions must be
accredited to produce reinforcement after a sequence of decisions?

How to sacrifice a small gain in the short term to facilitate a larger
gain in the long term?

=⇒ Dilemma exploration / exploitation

Example : inverted pendulum

The learning algorithm used here is Neural Fitted Q iteration, a
version de fitted Q-iteration based on neural networks.

Examples 1/2

I TD-Gammon. [Tesauro 1992-1995]: backgammon game. Best
player in the world!

I KnightCap [Baxter et al. 1998]: chess game (’2500 ELO)

I Computer poker (Nash equilibrium reached by means of
adversarial bandits), [Alberta, 2008]

I Computer go (hierarchical bandits), [Mogo, 2006]

I Robotics: jugglers, balance poles, acrobots, ... [Schaal and
Atkeson, 1994]

I Mobile robotics, navigation: robot guide in the Smithonian
museum [Thrun et al., 1999]

Examples 2/2

I Managing elevators [Crites et Barto, 1996]

I Paquets routing [Boyan et Littman, 1993]

I Planification [Zhang et Dietterich, 1995]

I Maintenance of machines [Mahadevan et al., 1997]

I Social Networks [Acemoglu et Ozdaglar, 2010]

I Yield Management, pricing of airplane tickets [Gosavi 2010]

I Prediction of electricity consumption [S. Meynn, 2010]

References

[Puterman ’94] Markov Decision Processes, Discrete Stochastic
Dynamic Programming

[Bertsekas ’95] Dynamic Programming and Optimal Control

[Sutton & Barto ’98] Reinforcement Learning

[Sigaud & Buffet ’08] Processus Décisionnels de Markov en
Intelligence Artificielle

[Cesa-Bianchi & Lugosi ’06] Prediction, Learning, and Games

Consistency

A strategy is said to be consistent if it permits to find, in a finite
time, the optimal politicy whatever the problem.

Strength : requires to find exactly the solution (and not an
approximate solution)

Weakness : one does not control at all what has been lost during
the learning stage

PAC bounds

PAC = “Probably Approximately Correct”

The complexity of a strategy is, for a given ε > 0, the time
required to identify a policy ε-optimal

A strategy is said to be PAC-MDP (Probably Approximately
Correct in Markov Decision Processes) if, for all ε and δ, its
complexity is bounded by a polynomial in 1/ε and in the
parameters of the problem with probability at least 1− δ.

Regret

The regret is defined as the difference between the sum of the
rewards obtained by measn of a strategy and the oracle reward
that would have been accumulated, at he same time, by an agent
knowing the optimal policy

In other research works, different variants are considered to
facilitate the analysis (average regret, conditional means, etc.)

This measure is more demanding : it takes into the performance of
a strategy starting from the first steps (no burn-in)

The optimistic paradigm

Optimistic algorithms : [Lai&Robins ’85; Agrawal ’95]

Do as if you were in the most favorable environment among those
making the observations likely enough

Introduced first in the context of bandits, and next widely
generalised these last few years

Properties

In a rather unexpected fashion, optimistic methods proved to be:

I relevant in many frameworks

I efficicent

I robust

I simple to implement

cf. examples below.

Formulation in Reinforcement Learning

I Static environment

I Conditionally upon the actions
(At)1≤t≤n, the rewards (Rt)1≤t≤n are
i.i.d. with mean µAt

I Goal : play action a∗ that corresponds to the largest average
reward:

µa∗ = max
a∈A

µa

I Performance measure : cumulated regret (in conditional
mean)

Regret(n) =
n∑

t=1

µa∗ − µAt

Sequential clinical trials

One considers the following situation:

I patients suffering from a certain disease maladies are
diagnosed progressively

I several treatments are a priori at disposal but their efficiency
is poorly known for now

I one cures each patient with a treatment, and one observes the
result (binary for simplicity)

I objective : cure as many patients as possible (and not : know
precisely the efficiency of each treatment)

The ” multi-armed bandits” problem

Environment : ensemble of arms A; the choice of arm a ∈ A at
time t yields the reward

Xt = Xa,t ∼ Pa ∈M1(R)

and the collection
(
Xa,t

)
a∈A,t≥1 is independent

Dynamic allocation rule : π = (π1, π2, . . .) such that

At = πt(X1, . . . ,Xt−1)

Number of times one pulled the arm a ∈ A at time t ∈ N :

Na(t) =
∑
s≤t

1{As = b}

Performance, regret

I Cumulated reward : Sn = X1 + · · ·+ Xn, n ≥ 1

I Objective: choose π so as to maximize

E [Sn] =
n∑

t=1

∑
a∈A

E
[
E [Xt1{At = a}|X1, . . . ,Xt−1]

]
=
∑
a∈A

µaE [Na(n)]

where µa = E [Pa]

I Equivalent objective: minimize the regret

Rn = nµ∗ − E [Sn] =
∑

a:µa<µ∗

(µ∗ − µa)E [Na(n)]

where µ∗ = max
{
µa : a ∈ A

}

The ε-Greedy Algorithms

Rationale : one plays the best arm with probability 1− ε, and an
arm picked uniformly at random with probability ε

For a well-chosen value (or sequence of values) of ε, the algorithm
is consistent and one may prove bounds for the regret

Meanwhile, this is frequently sub-optimal (in general this is a first
approach to a problem)

The solution of Gittins

[Gittins ’79] Bandit Processes and Dynamic Allocation Indices

Index policy : one associates to each arm an index of performance
and one chooses that with largest index

Prefigures optimistic methods for MDP, cf. see later

Algorithm EXP3.P

Cf prediction of individual sequences with loss M − Ra
t . Estimation

of (unobserved) :

ˆ̀
t(a) =

M − Ra
t

pt(a)
1{At=a}

estimator unbiased of M − Ra
t

One then estimes the cumulated losses

L̂t(j , yt)) =
t∑

s=1

ˆ̀
t(a))

EXP3.P = randomised strategies with choice for the weighting:

p̂t(j) =
exp(−βL̂t−1(j , yt−1))∑
k exp(−βL̂t−1(k , yt−1))

Regret bound for EXP3.P

Theorem: By choosing

β = 1/M

√
2 log(N)

nM

the regret of algorithm EXP3.P compared to the best constant
strategy satisfies :

E [Rn(p̂)] ≤ M
√

2nN log(N)

In pratique, très robuste mais peu véloce à se concentrer sur le bon
bras quand il y en a un.

Upper Confidence Bound (UCB)

I Optimistic algorithms : [Lai&Robins ’85; Agrawal ’95]

Do as if you were in the most favourable environment among
those making the observations likely enough

I Here : UCB (Upper Confidence Bound) = establish an upper
bound for the interest of each action, and choose the most
promising one [Auer&al ’02; Audibert&al ’07]

I Advantage : behaviour easily interpretable and “acceptable”

⇒ the regret grows as C log(n), where C depends on

∆ = min
µa<µa∗

µa∗ − µa

UCB in action

Start

UCB in action

Start

Proof

UCB tends to align the upper bounds of confidence intervals

One bounds the number of times the sub-optimal arm j is pulled

One works conditionally to the confidence intervals

An arm of poor performance cannot have an upper confidence
bound lastingly above that of the best arm

How to compute UCB ?

UCB The original version [Auer & al ’02] uses the Hoeffding bound:

UCBV takes into account the variance by means of
Bernstein inequality:
=⇒ not really satisfactory !

kl-UCB use the true Hoeffding bound:

I Be careful : the number of observations is random !

A problem with two bandits

[Lamberton & Pagès & Tarrès ’04] When can the two-armed
Bandit algorithm be trusted ?

Model : a fund is managed by two traders A and B, who are in
charge of a fraction of the portfolio.

One wants to assign as quick as possible the management of the
portfolio to the best

Each day, one of the two traders is evaluated (with a probability
proportional to the fraction it manages) :

I if she/he performs well, one increases her/his fraction

I otherwise, she/he is not punished (the fraction is left
unchanged)

Question : will be the whole portfolio assigned to the best trader ?

Mathematical formulation

Denote by Xn the fraction managed by trader A. One supposes
X0 = x ∈]0, 1[.

Denote by En (resp. Fn) the event “trader A (resp. B) outperforms
day n”, and one suppose that the events {En,Fn} are independent.

One denotes by γn+1 the fraction that is managed by B which will
be gained by trader A if she/he is evaluated and outperforms day
n : one supposes γn ∈]0, 1[and

∑
n γn =∞.

Xn+1 = Xn + γn+1

(
(1− Xn)1{Un+1≤Xn}∩En+1

− Xn1{{Un+1≤Xn}}∩En

)
where Un denotes a sequence of i.i.d. r.v.’s uniformly distributed
on [0, 1].

Results

Theorem :

I Xn converges to X∞ ∈ {0, 1} with probability one.
I if 0 < P(Fn) < P(En) ≤ 1, P(X∞ = 0) can be non zero if γn

does not decrease fast enough towards 0. In particular, if

γn =
(

C
n+C

)α
:

I if 0 < α < 1 or if (α = 1 and C > 1/P(Fn)), then
P(X∞ = 0) > 0

I if γn = γ, P(X∞ = 0) ≥ (1− x)1/γP(Fn)

I if α = 1 and C < 1/P(Fn), then P(X∞ = 0) = 0

I if 0 < P(Fn) = P(En) ≤ 1, P(X∞ = 1) = x

Sharp results obtained by means of the theory of martingales

The lower bound of Lai&Robbins

Denote by KL(pj |p∗) the Kullback-Leibler divergence between the
distribution of the j-th arm and the optimal arm.

Theorem : for all strategy pulling always “sufficiently” the
optimal arm, and for all sub-optimal arm j , the number of times
the arm j is pulled is lower bounded in expectation :

E[T j(n)] ≥ log(n)

KL(pj |p∗)

Corollary : each strategy has a regret at least in C log(n), where C
depends on the distributions of the arms;

Minimax lower bound

Theorem : For n and N large enough, one may build a bandit
problem for which the regret of any strategy is at least

1

20

√
Nn

Remark : the analysis of UCB permits to bound the regret by

C
√
n log(n)

for a certain constant C independent from the problem.

Identification of failures

Detection of breakdowns in electrical networks

Number of possible circuits ≈ 1050

N random netwotk generators réseaux more or less focusing on
failure configurations

One has at disposal a simulator capable of detecting a failure, but
each job is computationally expensive

Problem : how to use efficiently our N simulators to find as fast
as possible a large number of failure configurations

Simplified modeling

For 1 ≤ j ≤ N, (X j
t)t i.i.d. uniformly distributed on {1, . . . ,m}

The failure configurations are {1, . . . ,Mj}

At time t, one chooses the distribution Jt and one draws X Jt
t

Goal : for a given budget n, maximize

n∑
j=1

{1, . . . ,Mj} ∩
{
X j
t : Jt = j

}

Dual problem : minimize the time required to pour find the
failures, all or partly

A bandit problem ?

Analogies :

I problem of sequential decisions

I N arms

I rewards Rt = 1 if X Jt
t ≤ MJt and if it has not been seen yet

But a huge difference : a “reward” does not necessarily encourage
to redo the same action ! In contrast : once a simulator j ran
through, one has to turn away from it !

=⇒ Parameter of a simulator r jt = R j
t/m, where

R j
t = #{1, . . . ,Mj} \

{
X j
t : Jt = j

}
evolves through time (bandit non stationary)

An optimistic solution

Estimation of the missing mass : Good-Turing [’53]

R̂ j
t = #{i ∈ {1, . . . ,m} :

∑
t:Jt=j

1
X j
j =1

= 1}

Bound of [McAllester-Schapire ’97]

P

r jt >
R̂ j
t

m
+
(

2
√

2 +
√

3
)√ log(3/δ)

m

 ≤ δ
Quite comparable to usual concentration inequalities

Good-UCB

Optimistic algorithm : upper confidence boundfor the missing mass
of each simulator
Si

Nt(j) =
t∑

s=1

1Js=j

désigne le nombre de tirage avec le simulateurs j jusqu’à l’instant
t, Good-UCB choisit :

Jt+1 = argmax
j

R̂ j
t

m
+ c

√
log (3t)

Nt(j)

Performance, bornes de regret, améliorations, généralisations :

work in progress. . .

	Apprentissage par renforcement - Problèmes de bandits
	Objectifs
	A few examples
	Mesures de performance
	``Theory of Wishful Thinking''

	Bandit problems
	Thee model
	Différentes solutions
	Optimalité
	Original application : Good-UCB

